These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Predicting free-living energy expenditure using a miniaturized ear-worn sensor: an evaluation against doubly labeled water.
    Author: Bouarfa L, Atallah L, Kwasnicki RM, Pettitt C, Frost G, Yang GZ.
    Journal: IEEE Trans Biomed Eng; 2014 Feb; 61(2):566-75. PubMed ID: 24108707.
    Abstract:
    Accurate estimation of daily total energy expenditure (EE)is a prerequisite for assisted weight management and assessing certain health conditions. The use of wearable sensors for predicting free-living EE is challenged by consistent sensor placement, user compliance, and estimation methods used. This paper examines whether a single ear-worn accelerometer can be used for EE estimation under free-living conditions.An EE prediction model as first derived and validated in a controlled setting using healthy subjects involving different physical activities. Ten different activities were assessed showing a tenfold cross validation error of 0.24. Furthermore, the EE prediction model shows a mean absolute deviation(MAD) below 1.2 metabolic equivalent of tasks. The same model was applied to a free-living setting with a different population for further validation. The results were compared against those derived from doubly labeled water. In free-living settings, the predicted daily EE has a correlation of 0.74, p 0.008, and a MAD of 272 kcal day. These results demonstrate that laboratory-derived prediction models can be used to predict EE under free-living conditions [corrected].
    [Abstract] [Full Text] [Related] [New Search]