These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of organum vasculosum of lamina terminalis, median preoptic nucleus, and medial preoptic area in anticipation of nursing in rabbit pups.
    Author: Moreno ML, Meza E, Morgado E, Juárez C, Ramos-Ligonio A, Ortega A, Caba M.
    Journal: Chronobiol Int; 2013 Dec; 30(10):1272-82. PubMed ID: 24112031.
    Abstract:
    Rhythmic feeding in rabbit pups is a natural model to study food entrainment because, similar to rodents under a schedule of food restriction, these animals show food-anticipatory activity (FAA) prior to daily nursing. In rodents, several brain systems, including the orexinergic system, shift their activity to the restricted feeding schedule, and remain active when subjects are hungry. As the lamina terminalis and regions of the preoptic area participate in the control of behavioral arousal, it was hypothesized that these brain regions are also activated during FAA. Thus, the effects of daily milk ingestion on FOS protein expression in the organum vasculosum of lamina terminalis (OVLT), median preoptic nucleus (MnPO), and medial preoptic area (MPOA) were examined using immunohistochemistry before and after scheduled time of nursing in nursed and fasted subjects. Additionally, FOS expression was explored in orexin (ORX) cells in the lateral hypothalamic area and in the supraoptic nucleus (SON) because of their involvement in arousal and fluid ingestion, respectively. Pups were entrained by daily nursing, as indicated by a significant increase in locomotor behavior before scheduled time of nursing in both nursed and fasted subjects. FOS was significantly higher in the OVLT, MnPO, and MPOA at the time of nursing, and decreased 8 h later in nursed pups. In fasted subjects, this effect persisted in the OVLT, whereas in the MnPO and MPOA, values did not drop at 8 h later, but remained at the same level or higher than those at the time of scheduled nursing. In addition, FOS was significantly higher in ORX cells during FAA in nursed pups in comparison with 8 h later, but in fasted subjects it remained high during most fasting time points. Additionally, OVLT, SON, and ORX cells were activated 1.5 h after nursing. We conclude that the OVLT, MnPO, and MPOA, but not SON, may participate in FAA, as they show activation before suckling of periodic milk ingestion, and that sustained activation of the OVLT, MnPO, and MPOA by fasting may contribute to the high arousal state associated with food deprivation. In agreement with this, ORX cells also remain active after expected nursing, which is consistent with reports in other species.
    [Abstract] [Full Text] [Related] [New Search]