These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Receptor-specific threshold effects of cyclic AMP are involved in the regulation of enzyme release and superoxide production from human neutrophils.
    Author: Lad PM, Goldberg BJ, Smiley PA, Olson CV.
    Journal: Biochim Biophys Acta; 1985 Aug 30; 846(2):286-95. PubMed ID: 2411298.
    Abstract:
    We have investigated the sequence of events leading from the activation of adenylate cyclase and increases in intracellular cyclic AMP to the modulation of enzyme release and superoxide production in human neutrophils. In the isolated plasma membrane, adenylate cyclase is activated by both prostaglandin E1 and isoproterenol. In the whole cell only a small increase in cyclic AMP is observed, though in the presence of the phosphodiesterase inhibitor, methylisobutylxanthine a substantial amplification in intracellular cyclic AMP is observed with both isoproterenol and prostaglandin E1. These conditions are relevant to the regulation of cell function, since fMet-Leu-Phe-stimulated superoxide production is inhibited by either prostaglandin E1 or isoproterenol in the absence of methylisobutylxanthine, while enzyme release is inhibited only via the prostaglandin E1 receptor and then only in the presence of methylisobutylxanthine. For enzyme release and superoxide production, the order of potency for three prostaglandins tested was prostaglandin E1 greater than prostaglandin D2 much greater than prostaglandin F2 alpha. Our results suggest that (a) superoxide production is more sensitive to regulation by cyclic AMP than enzyme release, (b) the type of receptor occupied as well as the threshold level of cyclic AMP attained are important to the regulation of enzyme release, and (c) although elevation in cyclic AMP is inhibitory to neutrophil function, phosphodiesterase inhibition is required in addition to adenylate cyclase activation to effect maximal inhibition.
    [Abstract] [Full Text] [Related] [New Search]