These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytochrome P450 modified polycrystalline indium tin oxide film as a drug metabolizing electrochemical biosensor with a simple configuration. Author: Yoshioka K, Kato D, Kamata T, Niwa O. Journal: Anal Chem; 2013 Nov 05; 85(21):9996-9. PubMed ID: 24117377. Abstract: The development of a biocatalytic electrode consisting of cytochrome P450 (CYP) proteins would be a key technology with which to establish simple drug metabolizing biosensors or screening devices for drug inhibitors. We have successfully detected the direct electron transfer (DET) from a human CYP layer or a CYP microsome adsorbed on a bare indium tin oxide (ITO) film electrode without any modification layers and applied it to drug metabolism evaluation. We compared the electrocatalytic properties of the two ITO films with different surface nanostructures (polycrystalline or amorphous). CYP on polycrystalline ITO film enhanced the electron transfer rate of oxygen reduction about fifteen times more than with amorphous film. The polycrystalline ITO film was a suitable electrode for the adsorption of CYP proteins while maintaining efficient DET and enzymatic activity, probably because of its larger surface area and negatively charged surface. The oxygen reduction current at the polycrystalline ITO film electrodes had increased 3- to 4-fold, specifically coupled with the oxidation of drugs (testosterone and quinidine) by the monooxygenase activity of CYP. In contrast, the oxygen reduction current completely disappeared in the presence of the CYP inhibitor (ketoconazole). Similar results could be obtained from the CYP microsome with sufficiently clear responses. These results indicate that the CYP modified polycrystalline ITO electrode offers the potential for electrochemically evaluating CYP activity for drug metabolism with a simple configuration.[Abstract] [Full Text] [Related] [New Search]