These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The T lymphocyte response to cytochrome c. V. Determination of the minimal peptide size required for stimulation of T cell clones and assessment of the contribution of each residue beyond this size to antigenic potency. Author: Schwartz RH, Fox BS, Fraga E, Chen C, Singh B. Journal: J Immunol; 1985 Oct; 135(4):2598-608. PubMed ID: 2411804. Abstract: The B10.A T cell proliferative response to pigeon cytochrome c is mainly directed against a single antigenic determinant located at the carboxy-terminal end of the molecule. In the present experiments, we used synthetic peptide analogs of the carboxy-terminal sequence of moth cytochrome c to explore the structural requirements for antigenic potency. The minimum-sized peptide capable of stimulating a full response varied with the T cell clone, but within the limits of the biological systems studied, was shown to be moth fragment 97-103. Addition of more amino acids at the amino terminal end increased the antigenic potency in uneven increments, with a large contribution being made at residue 95. Analysis of amino acid substitutions at this position provided no evidence that it contained a residue that directly contacted the T cell receptor. Instead, good agreement with an analysis that made use of helix-coil transition theory suggested that this residue, as well as others, increased antigenic potency by contributing to the stabilization of the secondary structure of the molecule in an alpha-helical configuration. The maximum effect of chain length on antigenic potency appeared to stop at residue 93, in agreement with the theoretical analysis. However, addition of several more amino-terminal residues to residue 93 showed one additional significant increment of increased potency. This was almost entirely accounted for by a single lysine located four amino acids beyond the glutamic acid at residue 93 (approximately one turn of an alpha-helix away). To experimentally test whether alpha-helix-forming tendencies could account for the increased potency of the larger analogs, the degree of helix formation in trifluoroethanol was assessed by circular dichroism measurements. A good correlation was found between antigenic potency and percentage of alpha-helix for peptides of increasing chain length from moth 95-103 up to moth 86-90; 94-103. These results suggest that secondary structure may play an important role in determining the potency of antigenic determinants involved in the activation of T lymphocytes.[Abstract] [Full Text] [Related] [New Search]