These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cyclic AMP-induced changes in membrane conductance of Necturus gallbladder epithelial cells.
    Author: Zeldin DC, Corcia A, Armstrong WM.
    Journal: J Membr Biol; 1985; 84(3):193-206. PubMed ID: 2411928.
    Abstract:
    Enhanced cellular cAMP levels have been shown to increase apical membrane Cl- and HCO3- conductances in epithelia. We found that the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) increases cAMP levels in Necturus gallbladder. We used conventional open-tip and double-barreled Cl- -selective microelectrodes to study the effects of IBMX on membrane conductances and intracellular Cl- activities in gallbladders mounted in a divided chamber and bathed with Ringer's solutions at 23 degrees C and pH 7.4. In HCO3- -free media, 0.1 mM IBMX added to the mucosal medium depolarized the apical membrane potential Va, decreased the fractional resistance FR, and significantly reduced intracellular Cl- activity (aCli). Under control conditions, aCli was above the value corresponding to passive distribution across the apical cell membrane. In media containing 25 mM HCO3-, IBMX caused a small transient hyperpolarization of Va followed by a depolarization not significantly different from that observed in HCO3- -free Ringer's. Removal of mucosal Cl-, Na+ or Ca2+ did not affect the IBMX-induced depolarization in Va. The basolateral membrane of Necturus gallbladder is highly K+ permeable. Increasing serosal K+ from 2.5 to 80 mM, depolarized Va. Mucosal IBMX significantly reduced this depolarization. Addition of 10 mM Ba2+, a K+ channel blocker, to the serosal medium depolarized Va and, essentially, blocked the depolarization induced by IBMX. These results indicate that mucosal IBMX increases apical HCO3- conductance and decreases basolateral K+ conductance in gallbladder epithelial cells via a cAMP-dependent mechanism. The latter effect, not previously reported in epithelial tissues, appears to be the major determinant of the IBMX-induced depolarization of Va.
    [Abstract] [Full Text] [Related] [New Search]