These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plasma apolipoprotein H levels are different between aspirin induced respiratory diseases and aspirin tolerant asthma.
    Author: Kim HJ, Park JS, Heo JS, Moon KY, Park CS.
    Journal: Pulm Pharmacol Ther; 2014 Apr; 27(2):184-9. PubMed ID: 24120690.
    Abstract:
    Aspirin-exacerbated respiratory disease (AERD) has attracted a great deal of attention because of its association with increased asthma severity. To identify plasma biomarkers for the prediction of AERD, the six most abundant plasma proteins (albumin, IgG, antitrypsin, IgA, transferrin, and haptoglobin) in pooled plasma samples were removed using a multiple affinity removal system column. Two-dimensional gel electrophoresis (2DE) was used for differential display proteomic analysis of the pooled plasma. Proteins were identified by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF)/TOF. Enzyme-linked immunosorbent assay (ELISA) was performed to identify and quantify apolipoprotein H (Apo H) in plasma from subjects with AERD and aspirin-tolerant asthma (ATA). Eight protein spots showed differences in relative intensity between pooled plasma from subjects with AERD (n = 8) and those with ATA (n = 8). MALDI-TOF/TOF analysis showed decreases in the levels of alpha-fibrinogen precursor, Apo H, fibrin beta, and proapolipoprotein in AERD as compared with ATA, and increases in chain A human complement component C3, 90-kDa heat shock protein, complement component C4a, and kininogen-1 isoform 2. Apo H concentrations were significantly increased in plasma from subjects with ATA than those with AERD and normal controls, as measured by ELISA (P < 0.01). AERD is characterized by changes in the levels of proteins involved in the coagulation and complement pathways. In addition, Apo H is up-regulated in ATA compared to AERD and normal controls, suggesting that Apo H may be involved in different pathogenesis of ATA from AERD.
    [Abstract] [Full Text] [Related] [New Search]