These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.
    Author: Sevimli S, Sagnella S, Kavallaris M, Bulmus V, Davis TP.
    Journal: Biomacromolecules; 2013 Nov 11; 14(11):4135-49. PubMed ID: 24125032.
    Abstract:
    A library of cholesterol-derived ionic copolymers were previously synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization as 'smart' gene delivery vehicles that hold diverse surface charges. Polyplex systems formed with anionic poly(methacrylic acid-co-cholesteryl methacrylate) (P(MAA-co-CMA)) and cationic poly(dimethylamino ethyl methacrylate-co-cholesteryl methacrylate) (Q-P(DMAEMA-co-CMA)) copolymer series were evaluated for their therapeutic efficiency. Cell viability assays, conducted on SHEP, HepG2, H460, and MRC5 cell lines, revealed that alterations in the copolymer composition (CMA mol %) affected the cytotoxicity profile. Increasing the number of cholesterol moieties in Q-P(DMAEMA-co-CMA) copolymers reduced the overall toxicity (in H460 and HepG2 cells) while P(MAA-co-CMA) series displayed no significant toxicity regardless of the CMA content. Agarose gel electrophoresis was employed to investigate the formation of stable polyplexes and determine their complete conjugation ratios. P(MAA-co-CMA) copolymer series were conjugated to DNA through a cationic linker, oligolysine, while Q-P(DMAEMA-co-CMA)-siRNA complexes were readily formed via electrostatic interactions at conjugation ratios beginning from 6:1:1 (oligolysine-P(MAA-co-CMA)-DNA) and 20:1 (Q-P(DMAEMA-co-CMA)-siRNA), respectively. The hydrodynamic diameter, ζ potential and complex stability of the polyplexes were evaluated in accordance to complexation ratios and copolymer composition by dynamic light scattering (DLS). The therapeutic efficiency of the conjugates was assessed in SHEP cells via transfection and imaging assays using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. DNA transfection studies revealed P(MAA-co-CMA)-oligolysine-DNA ternary complexes to be ineffective transfection vehicles that mostly adhere to the cell surface as opposed to internalizing and partaking in endosomal disrupting activity. The transfection efficiency of Q-P(DMAEMA-co-CMA)-GFP siRNA complexes were found to be polymer composition and N/P ratio dependent, with Q-2% CMA-GFP siRNA polyplexes at N/P ratio 20:1 showing the highest gene suppression in GFP expressing SHEP cells. Cellular internalization studies suggested that Q-P(DMAEMA-co-CMA)-siRNA conjugates efficiently escaped the endolysosomal pathway and released siRNA into the cytoplasm. The gene delivery profile, reported herein, illuminates the positive and negative attributes of each therapeutic design and strongly suggests Q-P(DMAEMA-co-CMA)-siRNA particles are extremely promising candidates for in vivo applications of siRNA therapy.
    [Abstract] [Full Text] [Related] [New Search]