These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dihydropyridine calcium channel activators and antagonists influence depolarization-evoked inositol phospholipid hydrolysis in brain. Author: Kendall DA, Nahorski SR. Journal: Eur J Pharmacol; 1985 Sep 10; 115(1):31-6. PubMed ID: 2412857. Abstract: Increased inositol phospholipid hydrolysis induced by elevated extracellular K+ was directly monitored by assaying [3H]inositol phosphate accumulation following prelabelling of cerebral cortical slices with [3H]inositol. Depolarization evoked by K+ increased [3H]inositol phosphate accumulation with a 2-3-fold stimulation observed at 18 mM K+. Higher concentrations of K+ failed to further increase accumulation though a suppression of the incorporation of [3H]inositol into phospholipid at higher K+ could complicate these results. Slices incubated with the dihydropyridine calcium channel activator BAY-K-8644 resulted in a much increased response to 12 mM and 18 mM K+ with substantially smaller enhancement of basal (6 mM) or much higher (30 and 55 mM) K+. The [3H]inositol phosphate response induced by 18 mM K+ + 1 microM BAY-K-8644 was markedly reduced when incubations were performed in the presence of reduced Ca2+. Similarly, preincubation of slices with the dihydropyridine antagonist PN-200-110 suppressed the response to K+ and to K+ + BAY-K-8644. This effect was stereospecific with the (+)-enantiomer being at least 100-fold more potent than the (-)-enantiomer. These data provide primary evidence for functional dihydropyridine-sensitive calcium channels in brain.[Abstract] [Full Text] [Related] [New Search]