These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimulation by dolichol phosphate-mannose and phospholipids of the biosynthesis of N-acetylglucosaminylpyrophosphoryl dolichol.
    Author: Kean EL.
    Journal: J Biol Chem; 1985 Oct 15; 260(23):12561-71. PubMed ID: 2413026.
    Abstract:
    Dolichol phosphate-mannose (dol-P-mannose) has been shown previously to stimulate the reaction: dolichol phosphate + UDP-[3H]GlcNAc----[3H]GlcNAc-P-P-polyprenols (Kean, E. L. (1982) J. Biol. Chem. 257, 7952-7954). Further studies on this phenomenon are described, using microsomes from the retina of the embryonic chick as the major source of enzyme. Neither dolichol-P-glucose nor retinyl-P-mannose showed this stimulatory activity. Phosphatidylglycerol also stimulated this same process and was most active among a variety of phospholipids which were tested, in accord with previous reports. The presence of GDP-2-deoxy-2-fluoro-D-mannose or GTP had no effect on the reaction. The apparent activation constant for dolichol-P-mannose was 2.2 microM, and for phosphatidylglycerol, 401 microM. The major product (90% or greater) obtained under basal and stimulatory conditions was GlcNAc-P-P-dolichol and the site of the stimulatory effect was the glucosaminyltransferase catalyzing the formation of this compound. The effects of stimulation on the kinetic properties were similar for both activators: increases in the Vmax of the reactions of 7-10-fold; increases in apparent Km for UDP-GlcNAc of 5-7-fold; a 3-fold decrease in apparent Km for dolichol-phosphate. When present together, a mutual inhibition of stimulation was observed compared to the additive effect from dol-P-mannose or phosphatidylglycerol alone. Although a substrate for the reaction, dolichol phosphate repressed the stimulation by dolichol-P-mannose but not that by phosphatidylglycerol. Dol-P-glucose, while not an activator of the reaction, acted as a negative modifier of the stimulation by dol-P-mannose by acting as a competitive inhibitor of the stimulation. The stimulatory phenomenon was observed in microsomes prepared from a variety of tissues from the embryonic chick and from postnatal tissue after partial delipidation. The addition of pyrophosphatase inhibitors did not bring about stimulation of GlcNAc-lipid synthesis, but did enhance the effect. These studies extend the previous observations of the participation of dolichol-P-mannose and phosphatidylglycerol as allosteric activators of GlcNAc-lipid synthesis and indicate additional aspects of metabolic regulation of the dolichol pathway.
    [Abstract] [Full Text] [Related] [New Search]