These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monte Carlo tools to supplement experimental microdosimetric spectra.
    Author: Chiriotti S, Moro D, Conte V, Colautti P, D'Agostino E, Sterpin E, Vynckier S.
    Journal: Radiat Prot Dosimetry; 2014 Oct; 161(1-4):454-8. PubMed ID: 24132390.
    Abstract:
    Tissue-equivalent proportional counters (TEPCs) are widely used in experimental microdosimetry for characterising the radiation quality in radiation protection and radiation therapy environments. Generally, TEPCs are filled with tissue-equivalent gas mixtures, at low gas pressure, to simulate tissue site sizes similar to the cell nucleus (1 or 2 µm). The TEPC response using Monte Carlo (MC) codes can be applied to supplement experimental measurements. Most of general-purpose MC codes currently available recourse to the condensed-history approach to model the electron transport and do not transport low-energy electrons (<1 keV), which can lead to systematic errors, especially in thin layers and in gas-condensed medium interfaces. In this work, a comparison between experimental microdosimetric spectra of (60)Co and (137)Cs radiation at different simulated sizes (from 1.0 to 3.0 μm) in pure propane versus simulated spectra obtained with two general-purpose codes FLUKA and PENELOPE, which include a detailed simulation of electron-photon transport in arbitrary materials, including gases, is presented.
    [Abstract] [Full Text] [Related] [New Search]