These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood.
    Author: McCarthy H, Skokauskas N, Mulligan A, Donohoe G, Mullins D, Kelly J, Johnson K, Fagan A, Gill M, Meaney J, Frodl T.
    Journal: JAMA Psychiatry; 2013 Dec; 70(12):1329-37. PubMed ID: 24132732.
    Abstract:
    IMPORTANCE: The neurobiological underpinnings of attention-deficit/hyperactivity disorder (ADHD) and particularly those associated with the persistence of ADHD into adulthood are not yet well understood. The correlation patterns in spontaneous neural fluctuations at rest are known as resting-state functional connectivity (RSFC) and could characterize ADHD-specific connectivity changes. OBJECTIVE: To determine the specific location of possible ADHD-related differences in RSFC between adults diagnosed as having ADHD in childhood and control subjects. DESIGN Using resting-state functional magnetic resonance imaging, we calculated and compared functional connectivity from attention, affective, default, and cognitive control networks involved in the psychopathology of ADHD between the ADHD and control groups. SETTING University psychiatric service and magnetic resonance imaging research center. PARTICIPANTS: Sixteen drug-free adults (5 women and 11 men; mean age, 24.5 years) diagnosed with combined-type ADHD in childhood and 16 healthy controls matched for age (mean age, 24.4 years), sex, handedness, and educational level recruited from the community. INTERVENTION: Functional magnetic resonance imaging. MAIN OUTCOMES AND MEASURES: Connectivity data from ventral and dorsal attention, affective, default, and cognitive control networks and ADHD symptoms derived from ADHD-specific rating instruments. RESULTS: Adults with ADHD showed significantly decreased RSFC within the attention networks and increased RSFC within the affective and default mode and the right lateralized cognitive control networks compared with healthy controls (P < .01, familywise error for whole-brain cluster correction). Lower RSFC in the ventral and dorsal attention network was significantly correlated with higher levels of ADHD symptoms (P < .001). CONCLUSIONS AND RELEVANCE: These RSFC findings might underpin a biological basis for adult ADHD and are functionally related to persistent inattention, disturbance in cognitive control, and emotional dysregulation in adults with ADHD. These findings need to be understood in the context of all aspects of brain function in ADHD.
    [Abstract] [Full Text] [Related] [New Search]