These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Non-animal photosafety assessment approaches for cosmetics based on the photochemical and photobiochemical properties.
    Author: Onoue S, Suzuki G, Kato M, Hirota M, Nishida H, Kitagaki M, Kouzuki H, Yamada S.
    Journal: Toxicol In Vitro; 2013 Dec; 27(8):2316-24. PubMed ID: 24134854.
    Abstract:
    The main purpose of the present study was to establish a non-animal photosafety assessment approach for cosmetics using in vitro photochemical and photobiochemical screening systems. Fifty-one cosmetics, pharmaceutics and other chemicals were selected as model chemicals on the basis of animal and/or clinical photosafety information. The model chemicals were assessed in terms of photochemical properties by UV/VIS spectral analysis, reactive oxygen species (ROS) assay and 3T3 neutral red uptake phototoxicity testing (3T3 NRU PT). Most phototoxins exhibited potent UV/VIS absorption with molar extinction coefficients of over 1000M(-1)cm(-1), although false-negative prediction occurred for 2 cosmetic phototoxins owing to weak UV/VIS absorption. Among all the cosmetic ingredients, ca. 42% of tested chemicals were non-testable in the ROS assay because of low water solubility; thereby, micellar ROS (mROS) assay using a solubilizing surfactant was employed for follow-up screening. Upon combination use of ROS and mROS assays, the individual specificity was 88.2%, and the positive and negative predictivities were estimated to be 94.4% and 100%, respectively. In the 3T3 NRU PT, 3 cosmetics and 4 drugs were incorrectly predicted not to be phototoxic, although some of them were typical photoallergens. Thus, these in vitro screening systems individually provide false predictions; however, a systematic tiered approach using these assays could provide reliable photosafety assessment without any false-negatives. The combined use of in vitro assays might enable simple and fast non-animal photosafety evaluation of cosmetic ingredients.
    [Abstract] [Full Text] [Related] [New Search]