These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Graphene-platinum nanohybrid as a robust and low-cost counter electrode for dye-sensitized solar cells. Author: Dao VD, Hoa NT, Larina LL, Lee JK, Choi HS. Journal: Nanoscale; 2013 Dec 21; 5(24):12237-44. PubMed ID: 24146088. Abstract: Dry plasma reduction (DPR) is an excellent approach for easily, continuously, uniformly and stably hybridizing platinum nanoparticles (Pt-NPs) on a graphene-coated layer under atmospheric pressure without any toxic chemicals and at a low temperature. The Pt-NPs with a size of 0.5-4 nm and mostly 2 nm were stably and uniformly hybridized on the surface of reduced graphene oxide (RGO) after co-reduction of Pt precursor ions and GO to Pt atoms and RGO, respectively. XPS analysis also revealed a repair of structural damage on the basal plane of the graphene as well as chemical bonding between Pt-NPs and RGO after DPR. Thus, the Pt-NPs/RGO nanohybrids applied to the counter electrode of dye-sensitized solar cells (DSCs) exhibited robust stability as well as ultrahigh electrochemical catalytic activity and conductivity using less than 1% of the Pt exploited for the Pt-sputtered counter electrodes. Thus, the Pt-NPs/RGO nanohybrid fabricated by DPR could be an excellent material for a robust and low-cost counter electrode for DSCs.[Abstract] [Full Text] [Related] [New Search]