These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigating the molecular structural features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based fourier transform infrared microspectroscopy. Author: Yang L, Christensen DA, McKinnon JJ, Beattie AD, Xin H, Yu P. Journal: J Agric Food Chem; 2013 Nov 27; 61(47):11250-60. PubMed ID: 24156528. Abstract: The synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) technique was used to quantify molecular structural features of the four hulless barley lines with altered carbohydrate traits [amylose, 1-40% of dry matter (DM); β-glucan, 5-10% of DM] in relation to rumen degradation kinetics, intestinal nutrient digestion, and predicted protein supply. Spectral features of β-glucan (both area and heights) in hulless barley lines showed a negative correlation with protein availability in the small intestine, including truly digested protein in the small intestine (DVE) (r = -0.76, P < 0.01; r = -0.84, P < 0.01) and total metabolizable protein (MP) (r = -0.71, P < 0.05; r = -0.84, P < 0.01). Variation in absorption intensities of total carbohydrate (CHO) was observed with negative effects on protein degradation, digestion, and potential protein supply (P < 0.05). Molecular structural features of CHO in hulless barley have negative effects on the supply of true protein to ruminants. The results clearly indicated the impact of the carbohydrate-protein structure and matrix.[Abstract] [Full Text] [Related] [New Search]