These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin. Author: Alkurt M, Yeşil Duymuş Z, Gundogdu M. Journal: J Prosthet Dent; 2014 Jan; 111(1):71-8. PubMed ID: 24161257. Abstract: STATEMENT OF PROBLEM: Acrylic resin denture fracture is common in prosthodontic practice. When fractured denture bases are repaired, recurrent fractures frequently occur at the repair surface interface or adjacent areas. PURPOSE: The purpose of this study was to evaluate the effect of different surface treatments on the flexural strength of the acrylic resin denture base repaired with heat-polymerized acrylic resin, autopolymerizing resin, and light-polymerized acrylic resin. MATERIAL AND METHODS: Ninety-six specimens of heat-polymerized acrylic resin were prepared according to the American Dental Association Specification No. 12 (65.0 × 10.0 × 2.5 mm) and sectioned into halves to create a repair gap (3.0 × 10 × 2.5 mm). The sectioned specimens were divided into 3 groups according to their repair materials. The specimens from each group were divided into 4 subgroups according to their surface treatments: a control group without any surface treatment; an experimental group treated with methyl methacrylate monomer (MMA group); an experimental group treated with airborne-particle abrasion with aluminum oxide particles of 250-μm particle size (abrasion group); and an experimental group treated with erbium:yttrium-aluminum-garnet laser (laser group). After the surface treatments, the 3 materials were placed into the repair gaps and then polymerized. After all of the specimens had been ground and polished, they were stored in distilled water at 37°C for 1 week and subjected to a 3-point bend test. Data were analyzed with a 2-way analysis of variance, and the Tukey honestly significant difference test was performed to identify significant differences (α=.05). The effects of the surface treatments and repair resins on the surface of the denture base resin were examined with scanning electron microscopy. RESULTS: Significant differences were found among the groups in terms of repair resin type (P<.001). All surface-treated specimens had higher flexural strength than controls, except the surface treated with the methyl methacrylate in the heat-polymerized group. A significant difference between the control and abrasion groups (P=.013) was found. The scanning electron microscopy observations showed that the application of surface treatments modified the surface of the denture base resin. CONCLUSIONS: The repair procedure with heat-polymerized resin exhibited significantly higher flexural strength than that of the autopolymerized and light-polymerized resins. In addition, the airborne-particle abrasion with aluminum oxide particles of 250-μm particle size improved the flexural strength of the specimens tested.[Abstract] [Full Text] [Related] [New Search]