These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-feeding physiology in Rhodnius prolixus: the possible role of FGLamide-related allatostatins. Author: Zandawala M, Orchard I. Journal: Gen Comp Endocrinol; 2013 Dec 01; 194():311-7. PubMed ID: 24161751. Abstract: Allatostatins (ASTs) are neuropeptides that were first identified as inhibitors of juvenile hormone biosynthesis by the corpora allata of some insect species. The FGLamide-related ASTs (FGLa/ASTs) belong to one of three families of insect ASTs. Previously, we showed that Rhodnius prolixus FGLa/ASTs (Rhopr-FGLa/ASTs) are present throughout the R. prolixus central nervous system and are associated with 5 dorsal unpaired median (DUM) neurons in the mesothoracic ganglionic mass. A similar set of neurons contain serotonin which is a diuretic hormone in R. prolixus. Rhopr-FGLa/ASTs inhibit both spontaneous contractions of the anterior midgut and leucokinin-1-induced hindgut contractions. Since these tissues are involved with post-feeding diuresis, these data suggest a possible role for FGLa/ASTs in events associated with feeding, and a possible interaction with serotonin. To investigate this possibility, we have examined the DUM neurons in more detail with regard to their peptide content, examined the potential release of Rhopr-FGLa/ASTs into the haemolymph following feeding, and further investigated the effects of Rhopr-FGLa/ASTs on feeding-related tissues. There are 10 DUM neurons in the abdominal neuromeres, 5 of which express serotonin-like immunoreactivity and the other 5 express FGLa/AST-like immunoreactivity. FGLa/AST-like immunoreactivity is reduced in the 5 DUM neuron cell bodies and their neurohaemal sites on abdominal nerves at 3-5 h post feeding. Rhopr-FGLa/ASTs do not inhibit serotonin-stimulated anterior midgut absorption or Malpighian tubule secretion but do inhibit hindgut contractions induced by an endogenous kinin, suggesting that they may only indirectly affect post-feeding diuresis in R. prolixus.[Abstract] [Full Text] [Related] [New Search]