These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biomechanical comparison of the K-ROD and Dynesys dynamic spinal fixator systems - a finite element analysis. Author: Lin HM, Pan YN, Liu CL, Huang LY, Huang CH, Chen CS. Journal: Biomed Mater Eng; 2013; 23(6):495-505. PubMed ID: 24165552. Abstract: Dynamic spinal fixators, such as the Dynesys (DY) and K-ROD (KD) systems, are designed to restore spinal stability and to provide flexibility. The long-term complications of implant breakage and the biomechanics of the adjacent and the bridged levels using the KD system are still unknown. Therefore, this study aims to investigate and compare the biomechanical effects of the KD system and the DY system. Finite element (FE) models of the degenerated lumbar spine, the DY system, and the KD system were each reconstructed. Hybrid-controlled analysis was applied in the three FE models. The FE results indicated that the KD system supplies the most stiffness during extension and the least stiffness during flexion, in contrast to the DY system. In contrast to the DY system, the KD system increased the facet contact force of the adjacent level, but this system decreased the screw stress on the cranial adjacent disc and the pedicle during flexion.[Abstract] [Full Text] [Related] [New Search]