These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Parameter estimation approach to banding artifact reduction in balanced steady-state free precession.
    Author: Björk M, Ingle RR, Gudmundson E, Stoica P, Nishimura DG, Barral JK.
    Journal: Magn Reson Med; 2014 Sep; 72(3):880-92. PubMed ID: 24166591.
    Abstract:
    PURPOSE: The balanced steady-state free precession (bSSFP) pulse sequence has shown to be of great interest due to its high signal-to-noise ratio efficiency. However, bSSFP images often suffer from banding artifacts due to off-resonance effects, which we aim to minimize in this article. METHODS: We present a general and fast two-step algorithm for 1) estimating the unknowns in the bSSFP signal model from multiple phase-cycled acquisitions, and 2) reconstructing band-free images. The first step, linearization for off-resonance estimation (LORE), solves the nonlinear problem approximately by a robust linear approach. The second step applies a Gauss-Newton algorithm, initialized by LORE, to minimize the nonlinear least squares criterion. We name the full algorithm LORE-GN. RESULTS: We derive the Cramér-Rao bound, a theoretical lower bound of the variance for any unbiased estimator, and show that LORE-GN is statistically efficient. Furthermore, we show that simultaneous estimation of T1 and T2 from phase-cycled bSSFP is difficult, since the Cramér-Rao bound is high at common signal-to-noise ratio. Using simulated, phantom, and in vivo data, we illustrate the band-reduction capabilities of LORE-GN compared to other techniques, such as sum-of-squares. CONCLUSION: Using LORE-GN we can successfully minimize banding artifacts in bSSFP.
    [Abstract] [Full Text] [Related] [New Search]