These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cadence and water temperature effect on physiological responses during water cycling. Author: Yazigi F, Pinto S, Colado J, Escalante Y, Armada-da-Silva PA, Brasil R, Alves F. Journal: Eur J Sport Sci; 2013; 13(6):659-65. PubMed ID: 24175730. Abstract: The aim of the study was to compare the maximal physiological responses during three protocols: maximal test on land cycle ergometer, maximal test on water cycling in an indoor pool at 27 °C (WC27) and at 31 °C (WC31). Moreover, the submaximal physiological responses were compared according cycling cadences and water temperatures during the water protocols. Ten young men were included and performed the protocols in separate days. Blood lactate (BL) concentration, heart rate (HR), oxygen uptake (VO2), ventilation (VE) and thermal comfort (TC) were collected during the exercise. The maximal HR and VO2 showed no significant differences between the protocols: HRmax: 189 ± 7 (Land), 188 ± 14 (WC27), 185 ± 9 bpm (WC31) and VO2max: 4.2 ± 0.4 (Land), 4.1 ± 0.5 (WC27) and 4.3 ± 0.5 l min(-1) (WC31). However, the maximal BL demonstrated significant lower values during the water protocols compared to the land protocol (p=0.018). All the submaximal physiological responses showed significant differences between the cadences (60, 70, 80 and 90 rpm). The effect of water temperature was significant for TC response (p=0.001) showing higher values at 31 °C than 27 °C (TCW27: 7 ± 1 and TCW31:9 ± 1). In conclusion, higher physiological responses were showed by increasing the cadence by 10 rpm and the subjects were more comfortable when cycling in the lower water temperature.[Abstract] [Full Text] [Related] [New Search]