These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical characterization of the molybdenum cofactor mutants of Neurospora crassa: in vivo and in vitro reconstitution of NADPH-nitrate reductase activity. Author: Dunn-Coleman NS. Journal: Curr Genet; 1984 Oct; 8(8):581-8. PubMed ID: 24177997. Abstract: Molybdenum cofactor (MoCo) mutants of Neurospora crassa lack both NADPH-nitrate reductase and xanthine dehydrogenase activity. In vivo and in vitro studies to further characterize these mutants are now reported. The MoCo mutants nit-9A and nit-9B are capable of growing, albeit poorly, with nitrate as the sole nitrogen source, provided high levels of molybdate are present. The MoCo mutants nit-9A, nit-9B and nit-9C, but not nit-1, nit-7 or nit-8, have significant levels of NADPH-nitrate reductase when grown in nitrate medium containing 30 mM molybdate. In vitro reconstitution experiments using cell free extracts of the N. crassa MoCo mutants and E. coli HB101 as a source of wild-type MoCo were performed. MoCo from E. coli was capable of reconstituting NADPH-nitrate reductase activity to nit-1, nit-7 and nit-8. Molybdate is required for the in vitro reconstitution of NADPH-nitrate reductase activity. It was not possible to in vitro reconstitute NADPH-nitrate reductase activity in the MoCo mutants nit-9A, nit-9B or nit-9C.[Abstract] [Full Text] [Related] [New Search]