These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A quantitative study of the relative contribution of different retinal sectors to the innervation of various thalamic and pretectal nuclei in goldfish.
    Author: Springer AD, Mednick AS.
    Journal: J Comp Neurol; 1985 Dec 15; 242(3):369-80. PubMed ID: 2418076.
    Abstract:
    The contribution of retinal ganglion cells situated in different retinal quadrants to the innervation of eight nontectal, retinorecipient targets was examined in goldfish. In some fish, cobaltous-lysine was used to selectively fill severed intraretinal ganglion cell axons and the number of filled axons within each nucleus was determined. In other fish, either the dorsal or ventral or nasal or temporal retina was ablated and the remaining axons from the intact retina were filled with cobalt. The density of the cobalt-filled axons within the retinorecipient targets was quantified with a microdensitometer. All of the eight targets received different degrees of innervation when the contributions from dorsal and ventral retina were compared. The suprachiasmatic nucleus received axons from ventral, but not from dorsal, retinal ganglion cells (RGCs), while the nucleus opticus dorsolateralis, nucleus opticus commissurae posterior, and nucleus opticus pretectalis dorsalis received more axons from ventral than from dorsal RGCs. The tuberal region, nucleus corticalis, and the accessory optic nucleus received axons from dorsal, but not from ventral, RGCs. The nucleus opticus pretectalis ventralis received more axons from dorsal then from ventral RGCs. Only one target, nucleus corticalis, appeared to receive more axons from nasal than from temporal RGCs. In general, those nuclei that were closest to the dorsal optic tract were innervated exclusively or predominantly by ventral RGC axons, whereas those nuclei that were closest to the ventral optic tract were innervated exclusively or predominantly by dorsal RGC axons. These data indicate that in this particular vertebrate, the dorsal and ventral retinal regions are not homogeneous with respect to their projections to nontectal nuclei. The possible role that the nontectal nuclei play in determining the course of optic axons is discussed.
    [Abstract] [Full Text] [Related] [New Search]