These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The associations between traffic-related air pollution and noise with blood pressure in children: results from the GINIplus and LISAplus studies.
    Author: Liu C, Fuertes E, Tiesler CM, Birk M, Babisch W, Bauer CP, Koletzko S, von Berg A, Hoffmann B, Heinrich J, GINIplus and LISAplus Study Groups.
    Journal: Int J Hyg Environ Health; 2014; 217(4-5):499-505. PubMed ID: 24183515.
    Abstract:
    Although traffic emits both air pollution and noise, studies jointly examining the effects of both of these exposures on blood pressure (BP) in children are scarce. We investigated associations between land-use regression modeled long-term traffic-related air pollution and BP in 2368 children aged 10 years from Germany (1454 from Munich and 914 from Wesel). We also studied this association with adjustment of long-term noise exposure (defined as day-evening-night noise indicator "Lden" and night noise indicator "Lnight") in a subgroup of 605 children from Munich inner city. In the overall analysis including 2368 children, NO2, PM2.5 mass (particles with aerodynamic diameters below 2.5μm), PM10 mass (particles with aerodynamic diameters below 10μm) and PM2.5 absorbance were not associated with BP. When restricting the analysis to the subgroup of children with noise information (N=605), a significant association between NO2 and diastolic BP was observed (-0.88 (95% confidence interval: -1.67, -0.08)). However, upon adjusting the models for noise exposure, only noise remained independently and significantly positively associated with diastolic BP. Diastolic BP increased by 0.50 (-0.03, 1.02), 0.59 (0.05, 1.13), 0.55 (0.03, 1.07), and 0.58 (0.05, 1.11)mmHg for every five decibel increase in Lden and by 0.59 (-0.05, 1.22), 0.69 (0.04, 1.33), 0.64 (0.02, 1.27), and 0.68 (0.05, 1.32)mmHg for every five decibel increase in Lnight, in different models of NO2, PM2.5 mass, PM10 mass and PM2.5 absorbance as the main exposure, respectively. In conclusion, air pollution was not consistently associated with BP with adjustment for noise, noise was independently and positively associated with BP in children.
    [Abstract] [Full Text] [Related] [New Search]