These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of the effects of internal TEA+ and Cs+ on potassium current in squid giant axons. Author: Clay JR. Journal: Biophys J; 1985 Dec; 48(6):885-92. PubMed ID: 2418889. Abstract: Internal tetraethylammonium (TEA) and cesium ions block outward potassium current in nerve membrane in a voltage-dependent manner. Blockade with Cs+ occurs virtually instantaneously after membrane depolarization, whereas blockade with TEA+ occurs after a delay. The latter result suggested to Armstrong (1966, J. Gen. Physiol., 50:279-293; 1969, J. Gen. Physiol., 54:553-575) that potassium channels must open before TEA+ blockade can occur, which is in contrast to Cs+ blockade, which appears to be independent of channel gating. The results in this study concerning the effect of TEA+ on inward (tail) current argue against the Armstrong model. Specifically, TEA+ (partially) blocks inward current without altering the tail current time constant. This result indicates that TEA+ can occupy its binding site within the channel whether or not the channel gates are open. This alternative hypothesis can describe both the steady-state and time-dependent components of TEA+ blockade.[Abstract] [Full Text] [Related] [New Search]