These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protection of NAD(P)H:quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice. Author: Gang GT, Hwang JH, Kim YH, Noh JR, Kim KS, Jeong JY, Choi DE, Lee KW, Jung JY, Shong M, Lee CH. Journal: Free Radic Biol Med; 2014 Feb; 67():139-49. PubMed ID: 24189322. Abstract: UNLABELLED: Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced reactive oxygen species (ROS) are thought to be a major factor in the development of acute renal injury by promoting the initial tubular damage. NAD(P)H: quinone oxidoreductase 1 (NQO1) is a well-known antioxidant protein that regulates ROS generation. The purpose of this study was to investigate whether NQO1 modulates the renal I/R injury (IRI) associated with NADPH oxidase (NOX)-derived ROS production in an animal model. We analyzed renal function, oxidative stress, and tubular apoptosis after IRI. NQO1(-/-) mice showed increased blood urea nitrogen and creatinine levels, tubular damage, oxidative stress, and apoptosis. In the kidneys of NQO1(-/-) mice, the cellular NADPH/NADP(+) ratio was significantly higher and NOX activity was markedly higher than in those of NQO1(+/+) mice. The activation of NQO1 by β-lapachone (βL) significantly improved renal dysfunction and reduced tubular cell damage, oxidative stress, and apoptosis by renal I/R. Moreover, the βL treatment significantly lowered the cellular NADPH/NADP(+) ratio and dramatically reduced NOX activity in the kidneys after IRI. From these results, it was concluded that NQO1 has a protective role against renal injury induced by I/R and that this effect appears to be mediated by decreased NOX activity via cellular NADPH/NADP(+) modulation. These results provide convincing evidence that NQO1 activation might be beneficial for ameliorating renal injury induced by I/R.[Abstract] [Full Text] [Related] [New Search]