These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of herpes simplex virus type 1 replication in fibroblast cultures by human blood mononuclear cells. Author: Leibson PJ, Hunter-Laszlo M, Hayward AR. Journal: J Virol; 1986 Mar; 57(3):976-82. PubMed ID: 2419591. Abstract: An assay was developed to test the effect of human blood mononuclear cells (MNCs) on herpes simplex virus (HSV) replication. In this assay, human fibroblast monolayers were inoculated with HSV and then cultured with or without blood MNCs. Fewer HSV-infected cells were recovered from human fibroblasts cultured in the presence than in the absence of blood MNCs. This inhibition of viral replication by MNCs was independent of HLA matching between the MNCs and fibroblasts and persisted even when T cells were depleted by antibody and complement. However, depletion of Leu11+ MNCs either by panning or with antibody and complement reduced the ability of the cells to suppress HSV infection, whereas enrichment of Leu11+ cells by fluorescence-activated cell sorting increased the viral suppression. Depletion of OKM1+ MNCs also reduced the viral suppression. After coculturing of MNCs and HSV-infected fibroblasts for 3 days, alpha interferon (IFN) and gamma IFN were detected in the supernatants. Predepletion of Leu11+ MNCs reduced the amount of gamma IFN produced in these cultures. Incubation of the MNCs and HSV-infected fibroblasts with antibody specific for either alpha or gamma IFN resulted in reduced viral suppression. Preincubation of MNCs for 18 h with either interleukin 2 or alpha IFN or for 7 days with antigen increased the suppression of HSV infection. These results suggest that natural killer cells with the Leu11+ phenotype participate in the recognition of HSV-infected cells at a point sufficiently early to interfere with the spread of infection in vitro and may inhibit viral replication by natural killer cell cytotoxicity, by generation of interferon, and by lymphokine-activated killing.[Abstract] [Full Text] [Related] [New Search]