These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The amiloride-sensitive sodium channel.
    Author: Sariban-Sohraby S, Benos DJ.
    Journal: Am J Physiol; 1986 Feb; 250(2 Pt 1):C175-90. PubMed ID: 2420186.
    Abstract:
    Net Na+ movement across the apical membrane of high-electrical resistance epithelia is driven by the electrochemical potential energy gradient. This entry pathway is rate limiting for transepithelial transport, occurs via a channel-type mechanism, and is specifically inhibited by the diuretic drug amiloride. This channel is selective for Na+, Li+, and H+, saturates with increasing extracellular Na+ concentration, and is not affected, at least in frog skin epithelium, by changes in apical membrane surface potential. There also appears to be multiple inhibitory regions associated with each Na+ channel. We discuss the possible implications of a voltage-dependent block by amiloride in terms of macroscopic inhibitory phenomena. We describe the use of cultured epithelial systems, in particular, the toad kidney-derived A6 cell line, and the preparation of apical plasma membrane vesicles to study the Na+ entry process. We discuss experiments in which single, amiloride-sensitive channel activity has been detected and summarize current experimental approaches directed at the biochemical identification of this ubiquitous Na+ transport system.
    [Abstract] [Full Text] [Related] [New Search]