These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ritonavir inhibits HIF-1α-mediated VEGF expression in retinal pigment epithelial cells in vitro. Author: Vadlapatla RK, Vadlapudi AD, Pal D, Mukherji M, Mitra AK. Journal: Eye (Lond); 2014 Jan; 28(1):93-101. PubMed ID: 24202050. Abstract: PURPOSE: Retinal hypoxia-mediated activation of the hypoxia-inducible factor (HIF pathway) leading to angiogenesis is a major signaling mechanism underlying a number of sight-threatening diseases. Inhibiting this signaling mechanism with an already approved therapeutic molecule may have promising anti-angiogenic role with fewer side effects. Hence, the primary objective of this study was to examine the expression of HIF-1α and VEGF in human retinal pigment epithelial cells treated with ritonavir under hypoxic and normoxic conditions. METHODS: ARPE-19 and D407 cells were cultured in normoxic or hypoxic conditions, alone or in the presence of ritonavir. Quantitative real-time polymerase chain reaction, immunoblot analysis, sandwich ELISA, endothelial cell proliferation, and cytotoxicity were performed. RESULTS: A 12-h hypoxic exposure resulted in elevated mRNA expression levels of both HIF-1α and VEGF in ARPE-19 and D407 cells. Hence, this time point was selected for subsequent experiments. Presence of ritonavir in the culture medium strongly inhibited VEGF expression in a concentration-dependent manner under hypoxic conditions. Immunoblot analysis demonstrated a substantially reduced protein expression of HIF-1α in the presence of ritonavir. Further, hypoxic exposure-induced VEGF secretion was also inhibited by ritonavir, as demonstrated using ELISA. Finally, ritonavir significantly diminished the proliferation of choroid-retinal endothelial (RF/6A) cells demonstrating potential anti-angiogenic activity. Cytotoxicity studies showed that ritonavir is non-toxic to RPE cells. CONCLUSIONS: This study demonstrates for the first time that ritonavir can inhibit HIF-1α and VEGF in ARPE-19 and D407 cells. Such inhibition may form a platform for application of ritonavir in the treatment of various ocular diseases.[Abstract] [Full Text] [Related] [New Search]