These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plasma source ion trap mass spectrometry: Enhanced abundance sensitivity by resonant ejection of atomic ions.
    Author: Eiden GC, Barinaga CJ, Koppenaal DW.
    Journal: J Am Soc Mass Spectrom; 1996 Nov; 7(11):1161-71. PubMed ID: 24203079.
    Abstract:
    An experimental study of resonant ion excitation in an rf quadrupole ion trap is reported. Atomic ions are generated in an inductively coupled plasma and injected into the ion trap where, after collisional cooling, they are irradiated by a low-voltage, dipole coupled waveform. Single frequency, narrowband, and broadband excitation pulses have been used. Absorption lineshapes (plots of observed ion signal versus excitation frequency) are shown for variations in buffer gas pressure and the amplitude and duration of the single frequency pulses. The absorption lineshapes are usually asymmetric and tail toward lower frequencies. At sufficiently low buffer gas pressure or potential well depth, the lineshapes broaden and become more asymmetric to the point that absorption by ions with adjacent mass-to-charge ratios overlaps. This overlapping absorption reduces the selectivity with which a single mass-to-charge ratio ion can be excited and ejected relative to nearby mass-to-charge ratio ions. The rate of ion ejection is different on the low versus high frequency edges of the absorption lines. This difference in ejection rates provides an important key to understanding the shape of the absorption lines. All of these observations are explained in terms of the known kinematic behavior of ions in real traps, that is, traps with substantial higher order symmetry components in the trapping field ("nonlinear" fields). The importance of the nonlinearity of the trapping field in understanding the observed lineshapes and their time dependencies is discussed. We also report resonant ejection results obtained using multiple frequency (narrow or broad bandwidth) excitation. Multiple frequency excitation allows ions with different mass-to-charge ratio values to be ejected from the trap using one excitation waveform. The finite ion storage capacity of the ion trap is thereby reserved for the ion(s) of interest. We show that ejection of (89)Y ions can be ∼ 10(5) times more efficient than ejection of ions at either m/z 88 or 90.
    [Abstract] [Full Text] [Related] [New Search]