These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Surfactant-free, cationic latices of poly(BMA-co-MMA) using AIBA initiator. Author: Lee KC. Journal: J Nanosci Nanotechnol; 2013 Sep; 13(9):6286-92. PubMed ID: 24205646. Abstract: When polymer particles come into use, especially, for photonic crystal applications, their diameter, dispersivity, and refractive indices become very important. Poly(benzyl methacrylate) is known to be a kind of high refracive materials (n = 1.57) compared to poly(methyl methacrylate) (n = 1.49). Not many work was concerned for surfactant-free emulsion polymerization of benzyl methacrylate or its copolymerization using cationic initiators. Narrowly dispersed cationic poly(BMA-co-MMA) and PBMA latices were synthesized successfully by surfactant-free emulsion polymerization with AIBA. The influences of BMA/MMA ratio, BMA/MMA monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the kinetics and on the particle size and molecular weight were studied. Monodisperse cationic charged PBMA and poly(BMA-coMMA) latices with particle diameters varying between 160-494 nm and polymer molecular weights of the order 1.25 x 10(4) to 7.55 x 10(4) g/mol were prepared. The rate of polymerization increased with increasing MMA concentration in BMA/MMA ratio, AIBA concentration, DVB crosslink agent, and polymerization temperature. The particle diameter increased with BMA concentration in BMA/MMA ratio, AIBA concentration, and BMA/MMA monomer concentration. The molecular weight increased with BMA concentration in BMA/MMA ratio and BMA/MMA monomer concentration. The glass transition temperature of the latex copolymers decreased with increasing amount of BMA from 375 K for PMMA to 321 K for PBMA. It was, thus, found that the particle diameter and rate of polymerization as well as the polymer molecular weight for surfactant-free emulsion polymerization of BMA and MMA can be controlled easily by controlling the BMA/MMA ratio, BMA/MMA monomer concentration, AIBA concentration, and polymerization temperature.[Abstract] [Full Text] [Related] [New Search]