These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estimation of thermal conductivity of amorphous silicon thin films from the optical reflectivity measurement. Author: Moon SJ, Choi JH. Journal: J Nanosci Nanotechnol; 2013 Sep; 13(9):6362-6. PubMed ID: 24205662. Abstract: Amorphous silicon (a-Si) thin film material is widely used in liquid crystal display and solar cell applications. Knowledge of its properties is important in enhancing device performance. The properties of a-Si thin film have not been well understood due to the lack of periodicity of the structure. Furthermore, thermal conductivity of a-Si thin film is a key parameter to understand the complex phase transformation mechanism from a-Si thin film to polysilicon thin film by analyzing the transient temperature during the laser recrystallization process. In this work, thermal conductivity of a-Si thin film was determined by measuring optical reflectivity. A-Si thin film was irradiated with a KrF excimer laser beam to raise its temperature. The raised film temperature affects temperature-dependent optical properties such as refractive indices and extinction coefficients. The temperature-dependent optical properties of refractive indices and extinction coefficients of a-Si thin film were measured by ellipsometry. In-situ transient reflectivity at the wavelength of 633 nm was obtained during the excimer laser irradiation. The numerical simulation of one-dimensional conduction equation was solved so that transient reflectivities were calculated with temperature-dependent optical properties combined with thin film optics. Therefore, a well-fitted thermal conductivity was determined by comparing the numerically obtained transient reflectivity with the experimentally measured reflectivity data. The determined thermal conductivity of a-Si thin films was 1.5 W/mK.[Abstract] [Full Text] [Related] [New Search]