These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty.
    Author: Choi A, Rim Y, Mun JS, Kim H.
    Journal: Biomed Mater Eng; 2014; 24(1):341-7. PubMed ID: 24211915.
    Abstract:
    Alterations of normal mitral valve (MV) function lead to mitral insufficiency, i.e., mitral regurgitation (MR). Mitral repair is the most popular and most efficient surgical intervention for MR treatment. An annuloplasty ring is implanted following complex reconstructive MV repairs to prevent potential reoccurrence of MR. We have developed a novel finite element (FE)-based simulation protocol to perform patient-specific virtual ring annuloplasty following the standard clinical guideline procedure. A virtual MV was created using 3D echocardiographic data in a patient with mitral annular dilation. Proper type and size of the ring were determined in consideration of the MV apparatus geometry. The ring was positioned over the patient MV model and annuloplasty was simulated. Dynamic simulation of MV function across the complete cardiac cycle was performed. Virtual patient-specific annuloplasty simulation well demonstrated morphologic information of the MV apparatus before and after ring implantation. Dynamic simulation of MV function following ring annuloplasty demonstrated markedly reduced stress distribution across the MV leaflets and annulus as well as restored leaflet coaptation compared to pre-annuloplasty. This novel FE-based patient-specific MV repair simulation technique provides quantitative information of functional improvement following ring annuloplasty. Virtual MV repair strategy may effectively evaluate and predict interventional treatment for MV pathology.
    [Abstract] [Full Text] [Related] [New Search]