These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition.
    Author: Lin YC, Lee YC, Li LH, Cheng CJ, Yang RB.
    Journal: J Cell Sci; 2014 Jan 01; 127(Pt 1):85-100. PubMed ID: 24213532.
    Abstract:
    Signal peptide-CUB-EGF domain-containing protein 2 (SCUBE2) belongs to a secreted and membrane-associated multi-domain SCUBE protein family. We previously demonstrated that SCUBE2 is a novel breast-tumor suppressor and could be a useful prognostic marker. However, the role of SCUBE2 in breast-cancer cell migration and invasion and how it is regulated during the epithelial-mesenchymal transition (EMT) remain undefined. In this study, we showed that ectopic SCUBE2 overexpression could enhance the formation of E-cadherin-containing adherens junctions by β-catenin-SOX-mediated induction of forkhead box A1 (a positive regulator of E-cadherin) and upregulation of E-cadherin, which in turn led to epithelial transition and inhibited migration and invasion of aggressive MDA-MB-231 breast-carcinoma cells. SCUBE2 expression was repressed together with that of E-cadherin in TGF-β-induced EMT; direct expression of SCUBE2 alone was sufficient to inhibit the TGF-β-induced EMT. Furthermore, quantitative DNA methylation, methylation-specific PCR, and chromatin immunoprecipitation analyses revealed that SCUBE2 expression was inactivated by DNA hypermethylation at the CpG islands by recruiting and binding DNA methyltransferase 1 during TGF-β-induced EMT. Together, our results suggest that SCUBE2 plays a key role in suppressing breast-carcinoma-cell mobility and invasiveness by increasing the formation of the epithelial E-cadherin-containing adherens junctions to promote epithelial differentiation and drive the reversal of EMT.
    [Abstract] [Full Text] [Related] [New Search]