These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of the osmolyte TMAO (Trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions.
    Author: Macdonald RD, Khajehpour M.
    Journal: Biophys Chem; 2013 Dec 31; 184():101-7. PubMed ID: 24216065.
    Abstract:
    Osmolytes are small, soluble organic molecules produced by living organisms for maintaining cell volume. These molecules have also been shown to have significant effects on the stability of proteins. Perhaps one of the most studied osmolytes is Trimethylamine-N-oxide (TMAO). Thermodynamic studies of the effects of TMAO on proteins have shown that this molecule is a strong stabilizer of the protein folded state, thus being able to counteract the effects of protein denaturants such as urea and guanidine hydrochloride. Most studies of TMAO effects on bio-molecular stability have until now been focused on how the osmolyte reduces the solubility of polypeptide backbones, while the effects of TMAO on hydrophobic interactions are still not well understood. In fact, there are few experimental data measuring the effect of TMAO on hydrophobic interactions. This work studies phenyl and alkyl contact pairs as model hydrophobic contact pairs. The formation of these contact pairs is monitored using fluorescence, i.e., through the quenching of phenol fluorescence by carboxylate ions; and a methodology is developed to isolate hydrophobic contributions from other interactions. The data demonstrate that the addition of TMAO to the aqueous solvent destabilizes hydrophobic contact pairs formed between alkyl and phenyl moieties. In other words, TMAO acts as a "denaturant" for hydrophobic interactions.
    [Abstract] [Full Text] [Related] [New Search]