These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Embedded optical waveguides fabricated in SF10 glass by low-repetition-rate ultrafast laser.
    Author: Bai J, Long X, Liu X, Huo G, Zhao W, Stoian R, Hui R, Cheng G.
    Journal: Appl Opt; 2013 Oct 20; 52(30):7288-94. PubMed ID: 24216582.
    Abstract:
    Symmetric embedded waveguides were fabricated in heavy metal oxide SF10 glass using slit-shaped infrared femtosecond laser writing in the low-repetition frequency regime. The impact of the writing parameters on the waveguide formation in the transverse writing scheme was systemically studied. Results indicate that efficient waveguides can be inscribed in a wide parameter space ranging from 500 fs to 1.5 ps pulse duration, 0.7-4.2 μJ pulse energy, and 5 μm/s to 640 μm/s scan speed and pointing out the robustness of the photoinscription process. The refractive index profile reconstructed from the measured near field pattern goes up to 10(-3). In addition, propagation losses of the waveguides are tolerable, with the lowest propagation loss estimated at 0.7 dB/cm. With a 5 μm/s scan speed and 3.5 μJ pulse energy in a high-dose regime, few-mode guiding was achieved in the waveguide at 800 nm signal injection wavelength. This is due to a combination of increased refractive index in the core of the trace and the appearance of a depressed cladding.
    [Abstract] [Full Text] [Related] [New Search]