These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic complementation for a single gene function associated with partial and total loss of donor DNA in interspecific somatic hybrids.
    Author: Agoudgil S, Hinnisdaels S, Mouras A, Negrutiu I, Jacobs M.
    Journal: Theor Appl Genet; 1990 Sep; 80(3):337-42. PubMed ID: 24220966.
    Abstract:
    We report here on the obtainment of interspecific somatic, asymmetric, and highly asymmetric nuclear hybrids via protoplast fusion. Asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from a nitrate reductase-deficient cofactor mutant of N. plumbaginifolia with irradiated (100 krad) kanamycin resistant leaf protoplasts of a haploid N. tabacum. Selection for nitrate reductase (NR) and/or kanamycin (Km) resistance resulted in the production of three groups of plants (NR(+), NR(+), Km(R), and NR(-)Km(R)). Cytological analysis of some hybrid regenerants showed the presence of numerous tobacco chromosomes and chromosome fragments, besides a polyploid N. plumbaginifolia genome (tetra or hexaploid). All the regenerants tested were male sterile but some of them could be backcrossed to the recipient partner. In a second experiment, somatic and highly asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from the universal hybridizer of N. plumbaginifolia with suspension protoplasts of a tumor line of N. tabacum. Selection resulted in two types of colonies: nonregenerating hybrid calli turned out to be true somatic hybrids, while cytological analysis of regenerants obtained on morphogenic calli did not show any presence of donor-specific chromosomes. Forty percent of the hybrid regenerants were completely fertile, while the others could only be backcrossed to the recipient N. plumbaginifolia. Since the gene we selected for is not yet cloned, we were not able to demonstrate the transfer of genetic material at the molecular level. However, since no reversion frequency for the nitrate reductase mutant is known, and due to a detailed cytological knowledge of both fusion partners, we feel confident in speculating that intergenomic recombination between N. plumbaginifolia and N. tabacum has occurred.
    [Abstract] [Full Text] [Related] [New Search]