These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The selective release of one of the two L7/L12 dimers from the Escherichia coli ribosome induced by a monoclonal antibody to the NH2-terminal region.
    Author: Tewari DS, Sommer A, Traut RR.
    Journal: J Biol Chem; 1986 May 25; 261(15):6919-23. PubMed ID: 2422172.
    Abstract:
    Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12 were prepared and characterized as reported previously (Sommer, A., Etchison, J.R., Gavino, G., Zecherle, N., Casiano, C., and Traud, R.R. (1985) J. Biol. Chem. 260, 6522-6527). Both antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor G to the ribosome at mole ratios over ribosomes of 4:1 or less. One epitope was shown to be within residues 1-73 (Ab 1-73) and the other within 74-120 (Ab 74-120). Incubation of 50 S ribosomal subunits or 70 S ribosomes with Ab 1-73, but not with Ab 74-120, leads to a partial loss of L7/L12 from the particle with no loss of any other protein. The experiment was repeated with ribosomes reconstituted with pure radioactive L7/L12 of determined specific activity in order to quantify the L7/L12 in the antibody-treated particle. The protein-deficient core particles isolated by sucrose gradient centrifugation after incubation with Ab 1-73 were found to contain, on average, two copies of L7/L12 and one Ab 1-73. The constancy of this stoichiometry in many experiments and the demonstration of Ab 1-73 on all particles indicate the presence of a homogeneous population of ribosomes, each with only one of the two L7/L12 dimers originally present. The results show a difference in the interactions of the two dimers with the ribosome and present a means of preparing ribosomes with one dimer in a specific binding site. The accompanying paper (Olson, H.M., Sommer, A., Tewari, D. S., Traut, R.R., and Glitz, D.G. (1986) J. Biol. Chem. 261, 6924-6932) shows by immune electron microscopy the location of the two antibody-binding sites and the effect of Ab 1-73 on structure.
    [Abstract] [Full Text] [Related] [New Search]