These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interaction between the activator agents batrachotoxin and veratridine and the gating processes of neuronal sodium channels. Author: Rando TA, Wang GK, Strichartz GR. Journal: Mol Pharmacol; 1986 May; 29(5):467-77. PubMed ID: 2422536. Abstract: The depolarization of frog sciatic nerves by the Na channel-activating toxins, batrachotoxin and veratridine, was studied using the sucrose-gap technique. To study the interaction between the activators and the gating processes of Na channels, we measured the depolarizations of unstimulated nerves, of nerves during repetitive stimulation, and of nerves whose Na channel inactivation process had been pharmacologically modified. Stimulation enhanced the rates of depolarization by the activators but did not effect the steady state depolarization values. Of the three inhibitors of Na channel inactivation that were tested (Leiurus alpha-scorpion toxin, chloramine T, and Ni2+), only Leiurus toxin enhanced the potencies of the activators. Neither chloramine T nor Ni2+ had any effect on the steady state level of depolarization produced by either activator. Both chloramine T and Ni2+, however, enhanced the rate of batrachotoxin action, although neither affected the rate of veratridine action. Leiurus toxin also potentiated the effects of the activators in chloramine T-treated nerves. We tested the interaction between the Na channel activators and a class of agents, local anesthetics, that stabilize a non-conducting state of the Na channel. The presence of lidocaine inhibited the depolarization produced by addition of either activator, although the addition of lidocaine subsequent to the development of batrachotoxin-induced depolarization produced repolarization very weakly and slowly. We also found that the lidocaine homologue, RAC 109I, was about 3 times as potent as its stereoisomer, RAC 109II, in its ability both to reduce the compound action potential amplitude and to inhibit the veratridine-induced depolarization.[Abstract] [Full Text] [Related] [New Search]