These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of group I metabotropic glutamate receptors enhances persistent sodium current and rhythmic bursting in main olfactory bulb external tufted cells.
    Author: Dong HW, Ennis M.
    Journal: J Neurophysiol; 2014 Feb; 111(3):641-7. PubMed ID: 24225539.
    Abstract:
    Rhythmically bursting olfactory bulb external tufted (ET) cells are thought to play a key role in synchronizing glomerular network activity to respiratory-driven sensory input. Whereas spontaneous bursting in these cells is intrinsically generated by interplay of several voltage-dependent currents, bursting strength and frequency can be modified by local intrinsic and centrifugal synaptic input. Activation of metabotropic glutamate receptors (mGluRs) engages a calcium-dependent cation current (I(CAN)) that increases rhythmic bursting, but mGluRs may also modulate intrinsic mechanisms involved in bursting. Here, we used patch-clamp electrophysiology in rat olfactory bulb slices to investigate whether mGluRs modulate two key intrinsic currents involved in ET cell burst initiation: persistent sodium (I(NaP)) and hyperpolarization-activated cation (Ih) currents. Using a BAPTA-based internal solution to block I(CAN), we found that the mGluR1/5 agonist DHPG enhanced I(NaP) but did not alter Ih. I(NaP) enhancement consisted of increased current at membrane potentials between -60 and -50 mV and a hyperpolarizing shift in activation threshold. Both effects would be predicted to shorten the interburst interval. In agreement, DHPG modestly depolarized (∼3.5 mV) ET cells and increased burst frequency without effect on other major burst parameters. This increase was inversely proportional to the basal burst rate such that slower ET cells exhibited the largest increases. This may enable ET cells with slow intrinsic burst rates to pace with faster sniff rates. Taken with other findings, these results indicate that multiple neurotransmitter mechanisms are engaged to fine-tune rhythmic ET cell bursting to context- and state-dependent changes in sniffing frequency.
    [Abstract] [Full Text] [Related] [New Search]