These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein phosphatase 2A is regulated by protein kinase Cα (PKCα)-dependent phosphorylation of its targeting subunit B56α at Ser41. Author: Kirchhefer U, Heinick A, König S, Kristensen T, Müller FU, Seidl MD, Boknik P. Journal: J Biol Chem; 2014 Jan 03; 289(1):163-76. PubMed ID: 24225947. Abstract: Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases consisting of a catalytic C, a structural A, and a regulatory B subunit. The substrate and therefore the functional specificity of PP2A are determined by the assembly of the enzyme complex with the appropriate regulatory B subunit families, namely B55, B56, PR72, or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser(41) of B56α. This phosphoamino acid residue was efficiently phosphorylated in vitro by PKCα. We detected a 7-fold higher phosphorylation of B56α in failing human hearts compared with nonfailing hearts. Purified PP2A dimeric holoenzyme (subunits C and A) was able to dephosphorylate PKCα-phosphorylated B56α. The potency of B56α for PP2A inhibition was markedly increased by PKCα phosphorylation. PP2A activity was also reduced in HEK293 cells transfected with a B56α mutant, where serine 41 was replaced by aspartic acid, which mimics phosphorylation. More evidence for a functional role of PKCα-dependent phosphorylation of B56α was derived from Fluo-4 fluorescence measurements in phenylephrine-stimulated Flp293 cells. The endoplasmic reticulum Ca(2+) release was increased by 23% by expression of the pseudophosphorylated form compared with wild-type B56α. Taken together, our results suggest that PKCα can modify PP2A activity by phosphorylation of B56α at Ser(41). This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca(2+) homeostasis.[Abstract] [Full Text] [Related] [New Search]