These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Discriminative and generative classification techniques applied to automated neonatal seizure detection.
    Author: Thomas EM, Temko A, Marnane WP, Boylan GB, Lightbody G.
    Journal: IEEE J Biomed Health Inform; 2013 Mar; 17(2):297-304. PubMed ID: 24235107.
    Abstract:
    A number of automated neonatal seizure detectors have been proposed in recent years. However, there exists a large variability in the morphology of seizure and background patterns, both across patients and over time. This has resulted in relatively poor performance from systems which have been tested over large datasets. Here, the benefits of employing a pattern recognition approach are discussed. Such a system may use numerous features paired with nonlinear classifiers. In particular, two types of nonlinear classifiers are contrasted for the task. Additionally, it is shown that the proposed architecture allows for efficient classifier combination which improves the performance of the algorithm. The resulting automated detector is shown to achieve field leading performance. A particular strength of the proposed algorithm is the performance of the algorithm when very low false detections are required, at 0.25 false detections per hour, the system is able to detect 75.4% of the seizure events.
    [Abstract] [Full Text] [Related] [New Search]