These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection of seizure and epilepsy using higher order statistics in the EMD domain.
    Author: Alam SM, Bhuiyan MI.
    Journal: IEEE J Biomed Health Inform; 2013 Mar; 17(2):312-8. PubMed ID: 24235109.
    Abstract:
    In this paper, a method using higher order statistical moments of EEG signals calculated in the empirical mode decomposition (EMD) domain is proposed for detecting seizure and epilepsy. The appropriateness of these moments in distinguishing the EEG signals is investigated through an extensive analysis in the EMD domain. An artificial neural network is employed as the classifier of the EEG signals wherein these moments are used as features. The performance of the proposed method is studied using a publicly available benchmark database for various classification cases that include healthy, interictal (seizure-free interval) and ictal (seizure), healthy and seizure, nonseizure and seizure, and interictal and ictal, and compared with that of several recent methods based on time-frequency analysis and statistical moments. It is shown that the proposed method can provide, in almost all the cases, 100% accuracy, sensitivity, and specificity, especially in the case of discriminating seizure activities from the nonseizure ones for patients with epilepsy while being much faster as compared to the time-frequency analysis-based techniques.
    [Abstract] [Full Text] [Related] [New Search]