These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The series of rare earth complexes [Ln2Cl6 (μ-4,4'-bipy)(py)6], Ln=Y, Pr, Nd, Sm-Yb: a molecular model system for luminescence properties in MOFs based on LnCl3 and 4,4'-bipyridine. Author: Matthes PR, Nitsch J, Kuzmanoski A, Feldmann C, Steffen A, Marder TB, Müller-Buschbaum K. Journal: Chemistry; 2013 Dec 16; 19(51):17369-78. PubMed ID: 24243814. Abstract: A series of 12 dinuclear complexes [Ln2Cl6(μ-4,4'-bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, (1-12, respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4'-bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4-bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln-N-MOFs (∞)(2)[Ln2Cl6(4,4'-bipy)3]·2(4,4'-bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, (1, 4-8) were determined, showing an antenna effect through a ligand-metal energy transfer. The highest efficiency of luminescence is observed for the terbium-based compound 7 displaying a high quantum yield (QY of 86%). Excitation with UV light reveals typical emission colors of lanthanide-dependent intra 4f-4f-transition emissions in the visible range (Tb(III) : green, Eu(III) : red, Sm(III) : salmon red, Dy(III) : yellow). For the Gd(III)- and Y(III)-containing compounds 6 and 1, blue emission based on triplet phosphorescence is observed. Furthermore, ligand-to-metal charge-transfer (LMCT) states, based on the interaction of Cl(-) with Eu(III), were observed for the Eu(III) compound 5 including energy-transfer processes to the Eu(III) ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln-independent quantum yields in the related MOFs.[Abstract] [Full Text] [Related] [New Search]