These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selenium-mediated biochemical changes in Japanese quail : I. Formulation of semipurified low-selenium diet and effect on glutathione peroxidase. Author: Narayanaswami V, Padma Bai R, Babu M, Lalitha K. Journal: Biol Trace Elem Res; 1986 Aug; 10(2):79-89. PubMed ID: 24254354. Abstract: Essentiality of selenium (Se) for Japanese quail,Coturnix coturnix japonica, was confirmed using a formulated semipurified low-Se diet (basal) (0.05 ppm). Selenium-deficiency symptoms appeared in quails on this diet within 15 d, which corresponded to low levels of hemolysate glutathione peroxidase (GSH-Px) activity. Selenium administration at 0.05 and 2.0 ppm levels resulted in an increase of hemolysate GSH-Px activity by 64 and 116%, respectively, in both short- and long-term experiments. Growth over a 2-mo period increased the hemolysate GSH-Px activity by 120% at each level of dietary Se. A differential response was exhibited by hepatic mitochondrial and soluble GSH-Px activity to Se supplementation, the former increasing progressively with increments of Se at 0.05, 2.0, and 4.0 ppm by 45, 70 and 150%, respectively. The soluble GSH-Px activities of tissues, such as liver, kidney, and testis, and RBC membrane-bound activity remained unchanged in long-term studies at different levels of Se. Replenishment of Se to quails maintained on low-Se diets reflected no change in RBC membrane-bound and liver-soluble GSH-Px activities, although the activity in hemolysate increased consistently with Se. The GSH-Px activity in hemolysate was restored to the levels comparable to those of long-term studies only at Se administration at the 2.0-ppm level. The differential response of mitochondrial and soluble GSH-Px activities to Se and other related observations on mitochondrial functions suggest an additional role for Se in mitochondrial membrane processes and glutathione-related metabolic regulations.[Abstract] [Full Text] [Related] [New Search]