These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate.
    Author: Blackmore PF, Exton JH.
    Journal: J Biol Chem; 1986 Aug 25; 261(24):11056-63. PubMed ID: 2426266.
    Abstract:
    The effects of submaximal doses of AlF4- to mobilize hepatocyte Ca2+ were potentiated by glucagon (0.1-1 nM) and 8-p-chlorophenylthio-cAMP. A similar potentiation by glucagon of submaximal doses of vasopressin, angiotensin II, and alpha 1-adrenergic agonists has been previously shown (Morgan, N. G., Charest, R., Blackmore, P. F., and Exton, J. H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4208-4212). When hepatocytes were pretreated with the protein kinase C activator 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), the effects of AlF4- to mobilize Ca2+, increase myo-inositol 1,4,5-trisphosphate (IP3), and activate phosphorylase were attenuated. Treatment of hepatocytes with PMA likewise inhibits the ability of vasopressin, angiotensin II, and alpha 1-adrenergic agonists to increase IP3 and mobilize Ca2+ (Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F. (1985) J. Biol. Chem. 260, 2844-2851). In contrast, the ability of AlF4- or angiotensin II to lower cAMP or inhibit glucagon-mediated increases in cAMP was unaffected by PMA. The ability of AlF4- to lower cAMP was attenuated in hepatocytes from animals treated with islet-activating protein, whereas Ca2+ mobilization was not modified. These results suggest that the lowering of cAMP induced by AlF4- and angiotensin II was mediated by the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase, whereas Ca2+ mobilization was not. Addition of glucagon, forskolin, or 8CPT-cAMP to hepatocytes raised IP3 and mobilized Ca2+. Both effects were blocked by PMA pretreatment, whereas cAMP and phosphorylase a levels were only minimally affected by PMA. The mobilization of Ca2+ induced by cAMP in hepatocytes incubated in low Ca2+ media was not additive with that induced by maximally effective doses of vasopressin, angiotensin II, or alpha 1-adrenergic agonists, indicating that the Ca2+ pool(s) affected by agents which increase cAMP is the same as that affected by Ca2+-mobilizing hormones which do not increase cAMP. These findings support the proposal that AlF4- mimics the effects of the Ca2+-mobilizing hormones in hepatocytes by activating a guanine nucleotide-binding regulatory protein (Np) which couples the hormone receptors to a phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphodiesterase. They also suggest that Np, PIP2 phosphodiesterase, or a factor involved in their interaction is activated following phosphorylation by cAMP-dependent protein kinase and inhibited after phosphorylation by protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]