These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Multi-Classifier Approach to MUAP Classification for Diagnosis of Neuromuscular Disorders. Author: Kamali T, Boostani R, Parsaei H. Journal: IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):191-200. PubMed ID: 24263096. Abstract: The shapes and sounds of isolated motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide a significant source of information for diagnosis, treatment and management of neuromuscular disorders. These parameters can be analyzed qualitatively by an expert or quantitatively by using pattern recognition techniques. Due to the advantages of quantitative EMG method, developing robust automated MUAP classifiers have been explored and several systems have been developed for this purpose by now, but the accuracy of the existing methods is not high enough to be used in clinical environments. In this paper, a novel classification strategy based on ensemble of support vector machines (SVMs) classifiers in hybrid serial/parallel architecture is proposed to determine the class label (myopathic, neuropathic, or normal) for a given MUAP. The developed system employs both time domain and time-frequency domain features of the MUAPs extracted from an EMG signal using an EMG signal decomposition system. Different classification strategies including single classifier and multiple classifiers with several subsets of features were investigated. Experimental results using a set of real EMG signals showed robust performance of multi-classifier methods proposed here. Of the methods studied, the multi-classifier that uses multiple features sets and a combination of both trainable and nontrainable fusion techniques to aggregate base classifiers showed the best performance with average accuracy of 97% which is significantly higher than the average accuracy of single SVM-based classifier system (i.e., 88%).[Abstract] [Full Text] [Related] [New Search]