These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemical sensor for detection of hydrazine based on Au@Pd core-shell nanoparticles supported on amino-functionalized TiO2 nanotubes. Author: Chen X, Liu W, Tang L, Wang J, Pan H, Du M. Journal: Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():304-10. PubMed ID: 24268262. Abstract: In this paper, we reported a simple strategy for synthesizing well-defined TiO2NTs-Au@Pd hybrid nanostructures with prior TiO2 nanotube functionalization (F-TiO2NTs). TiO2NTs with larger surface area (BET surface area is 184.9m(2)g(-1)) were synthesized by hydrothermal method, and the NTs are anatase phase with a range of 2-3μm in length and 30-50nm in diameter after calcined at 400°C for 3h. 3-Aminopropyl-trimethoxysilane (APTMS) as a coupling agent was reacted with the surface hydroxyl groups as anchoring sites for flower-shaped bimetallic Au@Pd nanostructures, self-assembling amine functionality on the surface of TiO2NTs. Note that two faces at the interface between F-TiO2NTs with (004) plane and Au@Pd nanostructures with (111) one of cubic Au and Pd nanoparticles are compatible, benefiting to the charge transfer between two components due to their crystalline coordination. The results showed that as-prepared F-TiO2NTs-Au@Pd hybrid nanostructures modified glassy carbon electrode (GCE) exhibits high electrocatalytic activity toward hydrazine (N2H4) at low potential and a linear response from 0.06 to 700μM with the detection limit for N2H4 was found to be 1.2×10(-8)M (S/N=3). Based on scan rate effect during the hydrazine oxidation, it indicates that the number of electrons transferred in the rate-limiting step is 1, and a transfer coefficient (α) is estimated as 0.73. The self-assembled F-TiO2NTs-Au@Pd hybrid nanostructures as enhanced materials present excellent electrocatalytic activity, fast response, highly sensitive and have a promising application potential in nonenzymatic sensing.[Abstract] [Full Text] [Related] [New Search]