These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Author: Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA. Journal: Nature; 2014 Jan 02; 505(7481):56-61. PubMed ID: 24270805. Abstract: Voltage-gated calcium (CaV) channels catalyse rapid, highly selective influx of Ca(2+) into cells despite a 70-fold higher extracellular concentration of Na(+). How CaV channels solve this fundamental biophysical problem remains unclear. Here we report physiological and crystallographic analyses of a calcium selectivity filter constructed in the homotetrameric bacterial NaV channel NaVAb. Our results reveal interactions of hydrated Ca(2+) with two high-affinity Ca(2+)-binding sites followed by a third lower-affinity site that would coordinate Ca(2+) as it moves inward. At the selectivity filter entry, Site 1 is formed by four carboxyl side chains, which have a critical role in determining Ca(2+) selectivity. Four carboxyls plus four backbone carbonyls form Site 2, which is targeted by the blocking cations Cd(2+) and Mn(2+), with single occupancy. The lower-affinity Site 3 is formed by four backbone carbonyls alone, which mediate exit into the central cavity. This pore architecture suggests a conduction pathway involving transitions between two main states with one or two hydrated Ca(2+) ions bound in the selectivity filter and supports a 'knock-off' mechanism of ion permeation through a stepwise-binding process. The multi-ion selectivity filter of our CaVAb model establishes a structural framework for understanding the mechanisms of ion selectivity and conductance by vertebrate CaV channels.[Abstract] [Full Text] [Related] [New Search]