These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Leg stiffness and joint stiffness while running to and jumping over an obstacle. Author: Mauroy G, Schepens B, Willems PA. Journal: J Biomech; 2014 Jan 22; 47(2):526-35. PubMed ID: 24275441. Abstract: During running, muscles of the lower limb act like a linear spring bouncing on the ground. When approaching an obstacle, the overall stiffness of this leg-spring system (k(leg)) is modified during the two steps preceding the jump to enhance the movement of the center of mass of the body while leaping the obstacle. The aim of the present study is to understand how k(leg) is modified during the running steps preceding the jump. Since k(leg) depends on the joint torsional stiffness and on the leg geometry, we analyzed the changes in these two parameters in eight subjects approaching and leaping a 0.65 m-high barrier at 15 km h(-1). Ground reaction force (F) was measured during 5-6 steps preceding the obstacle using force platform and the lower limb movements were recorded by camera. From these data, the net muscular moment (M(j)), the angular displacement (θ(j)) and the lever arm of F were evaluated at the hip, knee and ankle. At the level of the hip, the M(j)-θ(j) relation shows that muscles are not acting like torsional springs. At the level of the knee and ankle, the M(j)-θ(j) relation shows that muscles are acting like torsional springs: as compared to steady-state running, the torsional stiffness k(j) decreases from ~1/3 two contacts before the obstacle, and increases from ~2/3 during the last contact. These modifications in k(j) reflect in changes in the magnitude of F but also to changes in the leg geometry, i.e. in the lever arms of F.[Abstract] [Full Text] [Related] [New Search]