These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/34, DM1A and DM1B.
    Author: Breitling F, Little M.
    Journal: J Mol Biol; 1986 May 20; 189(2):367-70. PubMed ID: 2427729.
    Abstract:
    Tryptic and cyanogen bromide peptides of pig brain alpha- and beta-tubulin reacting with monoclonal antibodies YOL1/34, DM1A and DM1B have been isolated and identified. They all correspond to parts of the C-terminal regions of either alpha- or beta-tubulin, and those peptides reacting with a given antibody have overlapping sequences. In the case of YOL1/34, its relatively high reactivity with small peptides suggests that many of the determinants for this antibody are within the overlapping region of these peptides comprising only nine amino acids in positions alpha 414 to 422. The smallest common region of peptides reacting with the other alpha-tubulin antibody DM1A corresponds to positions alpha 426 to 450, whereby amino acids within the positions 426 and 430 appear to be particularly important for reactivity. Since the last C-terminal residues of alpha-tubulin are also accessible to antibodies and enzymes, it seems that an extensive part (35 to 40 residues) of this very acidic C-terminal domain is exposed on the surface of native tubulin dimers. In microtubules, however, the amino-terminal end of this region appears to be less accessible, as YOL1/34 reacts poorly, if at all, with intact microtubules. All of the peptides reacting with beta-tubulin monoclonal antibody DM1B were derived from the acidic C-terminal domain and they overlapped in positions beta 416 to 430. This indicates that beta-tubulin is also positioned with at least part of its acidic C-terminal domain on the surface of microtubules, since DM1B reacts with unfixed microtubules after microinjection.
    [Abstract] [Full Text] [Related] [New Search]